FUZZY K- NORMAL AND POLYNOMIAL MATRICES

*R.Indira, **V.Subharani
*Assistant Professor(Sr.Gr),Department of Mathematics, Anna University, CEG campus, Chennai-600025, Tamilnadu
${ }^{* *}$ Research Scholar,Department of Mathematics, Anna University, CEG campus, Chennai-600025, Tamilnadu

ABSTRACT

In this paper we introduced the concept of fuzzy k-normal and fuzzy k-normal polynomial matrices and study some of its properties.

KEYWORDS: Fuzzy k-normal matrix, Fuzzy k-normal polynomial matrix.

I.INTRODUCTION

Let $\mathrm{F}=[0,1]$ be the fuzży algebra with operations addition and multiplication defined as $\mathrm{a}+\mathrm{b}=\max \{\mathrm{a}, \mathrm{b}\}$ and $\mathrm{ab}=\min \{\mathrm{a}, \mathrm{b}\}$, for every $\mathrm{a}, \mathrm{b} \in[0,1]$. A fuzzy matrix A of order $\mathrm{n} \times \mathrm{n}$ is defined as $\mathrm{A}=\left[x_{i j}, a_{i j}\right]$, where $a_{i j}$ is a membership value of the element $x_{i j}$ in A . For simplicity, we write A as $\mathrm{A}=\left[a_{6 j}\right], a_{i j} \in[0,1], \mathrm{i}, \mathrm{j}=1$ to $\mathrm{n}[2]$. For any matrix $\mathrm{A} \in$ $\mathrm{F}^{\mathrm{n} \times \mathrm{n}}$ (set of all fuzzy matrices of order n), the transpose of A is denoted by A^{T} and is defined as $A^{T}=\left[a_{j i}\right], i, j=1$ to $n . A \in F^{n \times n}$ is said to be normal matrix if $\quad A A^{T}=A^{T} A$ and is said to be unitary matrix if $A A^{T}=A^{T} A=I_{n}$. Let k be a fixed product of disjoint transpositions in $\mathrm{S}_{\mathrm{n}}=\{1,2,3 \ldots, \mathrm{n}\}$ and K be the associated permutation matrix of k and $\mathrm{K}^{2}=\mathrm{I}, \mathrm{K}=\mathrm{K}^{\mathrm{T}}$. Here, we made a study about fuzzy k -normal and polynomial matrices as an extension of k-normal and unitary polynomial matrices discussed in [1] for complex matrices.
Throughout this paper, we consider all the matrices are fuzzy matrices.

II. FUZZY K-NORMAL MATRICES

In this section, we defined the definion of fuzzy k-normal and fuzzy k-unitary matrices and discussed its algebraic properties.

Definition:2.1

A fuzzy matrix $A \in F^{n \times n}$ is said to be fuzzy k-normal if $A A^{T} K=K A^{T} A$.

Example:2.2

Let $A=\left[\begin{array}{cc}0.1 & 0.2 \\ 0 & 0.1\end{array}\right], K=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ then,
$A A^{T} K=\left[\begin{array}{ll}0.1 & 0.2 \\ 0.1 & 0.1\end{array}\right]=K A^{T} A, A$ is a fuzzy k-normal matrix.

Theorem:2.3

Let $\mathrm{A} \in F^{n \times n}$, then the following conditions are equivalent:
(i) A is fuzzy k-normal matrix.
(ii) A^{T} is fuzzy k-normal matrix.
(iii) hA is fuzzy k-normal matrix where $\mathrm{h} \in \mathrm{F}$.

Proof:

(i) \Leftrightarrow (ii):

A is fuzzy k-normal

$$
\begin{aligned}
& \Leftrightarrow A A^{T} K=K A^{T} A \\
& \Leftrightarrow\left(A A^{T} K\right)^{T}=\left(K A^{T} A\right)^{T} \\
& \Leftrightarrow K\left(A^{T}\right)^{T} A^{T}=A^{T}\left(A^{T}\right)^{T} K
\end{aligned}
$$

$\Leftrightarrow A^{T}$ is fuzzy k-normal matrix.
(i) \Leftrightarrow (iii):

A is fuzzy k-normal

$$
\begin{aligned}
& \Leftrightarrow A A^{T} K \quad=K^{T} A . \\
& \Leftrightarrow h^{2} A A^{T} K=h^{2} K A^{T} A . \\
& \Leftrightarrow(h A)(h A)^{T} K=K(h A)^{T}(h A) . \\
& \Leftrightarrow h A \text { is fuzzy k-normal matrix. }
\end{aligned}
$$

Theorem:2.4

If $\mathrm{A}, \mathrm{B} \in F^{\mathrm{NxN}} /$ are fuzzy k-normal matrices and $\mathrm{A}^{\mathrm{T}} \mathrm{K}=\mathrm{K} \mathrm{B}^{\mathrm{T}} \mathrm{A}$ and $B A^{T} K=K A^{T} B$, then $A+B$ is fuzzy k-normal matrix.

Proof:

Since A and B are fuzzy k-normal matrices.
We have $A A^{T} K=K A^{T} A$ and $B B^{T} K=K B^{T} B$.

$$
\begin{aligned}
(A+B)(A+B)^{T} K & =A A^{T} K+B B^{T} K+A B^{T} K+B A^{T} K \\
& =K A^{T} A+K B^{T} B+K B^{T} A+K A^{T} B=K(A+B)^{T}(A+B) .
\end{aligned}
$$

Hence A + B is fuzzy k-normal matrix.

Theorem :2.5

If $\mathrm{A}, \mathrm{B} \in F^{n \times n}$ are k -normal matrices and $\mathrm{AB}=\mathrm{BA}$, then AB is also a fuzzy k -normal matrix.

Proof:

$$
\begin{aligned}
& \text { We have to prove }[\mathrm{AB}][\mathrm{AB}]^{\mathrm{T}} \mathrm{~K}=\mathrm{K}[\mathrm{AB}]^{\mathrm{T}}[\mathrm{AB}] \\
& \begin{aligned}
& \mathrm{AB}[\mathrm{AB}]^{\mathrm{T}} \mathrm{~K}=A B A^{\mathrm{T}} \mathrm{~B}^{\mathrm{T}} \mathrm{~K}=\mathrm{AA}^{\mathrm{T}} \mathrm{BB}^{\mathrm{T}} \mathrm{~K}=A A^{\mathrm{T}} \mathrm{~K} \mathrm{~B} \\
& \\
&=\mathrm{K}[\mathrm{AB}]^{\mathrm{T}}[\mathrm{AB}] .
\end{aligned}
\end{aligned}
$$

Hence $A B$ is also a fuzzy k-normal matrix.

Definition :2.6

A matrix $A \in F^{n \times n}$ is said to be k-unitary if $A A^{T} K=K A^{T} A=K$. If it satisfies the condition then the possibility of A is a kind of invertible matrix, in particular it will be a permutation matrix.

Theorem:2.7

Let $\mathrm{A} \in F^{n \times n}$, then the following conditions are equivalent
(i) A is fuzzy k -unitary matrix.
(ii) A^{T} is fuzzy k - unitary matrix.
(iii) hA is fuzzy k-unitary matrix where $\mathrm{h} \in \mathrm{F}$.

Proof:

The proof is similar to that of theorem 2.3.

Theorem:2.8

Let $\mathrm{A}, \mathrm{B} \in F^{n \times n}$. If A and B are fuzzy k -unitary matrices, then AB is a fuzzy k-unitary matrix.

Proof:

A is fuzzy k - unitary then $A A^{T} K=K A^{T} A=K$.
B is fuzzy k - unitary then $B B^{T} K=K B^{T} B=K$.
(AB) (AB) $)^{T} K=A B B^{T} A^{T} K=A B B^{T} K K A^{T} K=A K K A^{T} K=A A^{T} K=K$.

$$
K(A B)^{T}(A B)=K B^{T} A^{T} A B=K B^{T} K K A^{T} A B=K B^{T} K K B=K B^{T} B=K .
$$

Hence $(A B)(A B)^{T} K=K(A B)^{T}(A B)=K$, and $A B$ is fuzzy k-unitary matrix.

Theorem:2.9

Let $\mathrm{A}, \mathrm{B} \in F^{n \times n}$. If A and B are fuzzy k-unitary matrices, then BA is fuzzy unitary matrix.

Proof:

Since A and B is fuzzy k- unitary matrix, then

$$
\mathrm{A} \mathrm{~A}^{\mathrm{T}} \mathrm{~K}=\mathrm{K} \mathrm{~A}^{\mathrm{T}} \mathrm{~A}=\mathrm{K} \quad \text { and } \quad \mathrm{B} \mathrm{~B} \mathrm{~B}^{\mathrm{T}} \mathrm{~K}=\mathrm{K} \mathrm{~B}^{\mathrm{T}} \mathrm{~B}=\mathrm{K} .
$$

From the above two equations, we have

$$
\begin{aligned}
{A A^{T} K B B^{T}}^{T} & =K A^{T} A K B^{T} B=I_{n} \\
& \Rightarrow K B B^{T} K=K A^{T} A K=I_{n} \Rightarrow B B^{T}=A A^{T}=I_{n} \\
& \Rightarrow B K^{2} B^{T}=A K^{2} A^{T}=I_{n} \Rightarrow B A A^{T} K K B^{T}=A^{T} K K B^{T} B A=I_{n} \\
& \Rightarrow B A(B A)^{T}=(B A)^{T} B A=I_{n} . \\
& \Rightarrow B A \text { is fuzzy unitary matrix. Hence the proof. }
\end{aligned}
$$

III. FUZZY K-NORMAL POLYNOMIAL MATRICES

In this section we have given the definition of the fuzzy k-normal and k-unitary polynomial matrices and some of its basic algebraic properties are studied which are analogous to that of k -normal polynomial matrices [1].

Definition:3.1

A fuzzy k -normal polynomial matrix is a polynomial matrix whose coefficient matrices are fuzzy k-normal matrices.

Example :3.2

Let $\mathrm{A}(\mathrm{x})$ be a fuzzy k-normal polynomial matrices.

$$
\begin{aligned}
\mathrm{A}(\mathrm{x}) & =\left[\begin{array}{cc}
0.1 x^{2}+0.2 x+0.1 & 0.2 x^{2}+0.3 x \\
0 & 0.1 x^{2}+0.2 x+0.1
\end{array}\right] \\
& =\left[\begin{array}{cc}
0.1 & 0.2 \\
0 & 0.1
\end{array}\right] \mathrm{x}^{2}+\left[\begin{array}{cc}
0.2 & 0.3 \\
0 & 0.2
\end{array}\right] x+\left[\begin{array}{cc}
0.1 & 0 \\
0 & 0.1
\end{array}\right] \\
& =\mathrm{A}_{2} \mathrm{x}^{2}+\mathrm{A}_{1} \mathrm{x}+\mathrm{A}_{0} \text {, where } \mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2} \text { are fuzzy k-normal matrices. }
\end{aligned}
$$

Theorem :3.3

If $\mathrm{A}(\lambda), \mathrm{B}(\lambda) \in F(\lambda)^{n \times n}$ (set of all fuzzy polynomial matrices of order n) are k-normal polynomial matrices and $\mathrm{A}(\lambda) \mathrm{B}(\lambda)=\mathrm{B}(\lambda) \mathrm{A}(\lambda)$, then $\mathrm{A}(\lambda) \mathrm{B}(\lambda)$ is also a fuzzy k-normal polynomial matrix.

Proof :

Let $\mathrm{A}(\lambda)=\mathrm{A}_{0}+\mathrm{A}_{1} \lambda+\ldots+\mathrm{A}_{\mathrm{n}} \lambda^{\mathrm{n}}$ and $\mathrm{B}(\lambda)=\mathrm{B}_{0}+\mathrm{B}_{1} \lambda+\ldots+\mathrm{B}_{\mathrm{n}} \lambda^{\mathrm{n}}$ be fuzzy polynomial k-normal matrices, $A_{0}, A_{1} \ldots A_{n}$ and $B_{0}, B_{1} \ldots B_{n}$ are fuzzy k-normal matrices. Also given ,
$\mathrm{A}(\lambda) \mathrm{B}(\lambda)=\mathrm{B}(\lambda) \mathrm{A}(\lambda)$
$\mathrm{A}(\lambda) \mathrm{B}(\lambda)=\mathrm{A}_{0} \mathrm{~B}_{0}+\left(\mathrm{A}_{0} \mathrm{~B}_{1}+\mathrm{A}_{1} \mathrm{~B}_{0}\right) \lambda+\ldots+\left(\mathrm{A}_{0} \mathrm{~B}_{\mathrm{n}}+\mathrm{A}_{1} \mathrm{~B}_{\mathrm{n}-1}+\ldots+\mathrm{A}_{\mathrm{n}} \mathrm{B}_{0}\right) \lambda^{\mathrm{n}}$
$\mathrm{B}(\lambda) \mathrm{A}(\lambda)=\mathrm{B}_{0} \mathrm{~A}_{0}+\left(\mathrm{B}_{0} \mathrm{~A}_{1}+\mathrm{B}_{1} \mathrm{~A}_{0}\right) \lambda+\ldots+\left(\mathrm{B}_{0} \mathrm{~A}_{\mathrm{n}}+\mathrm{B}_{1} \mathrm{~A}_{\mathrm{n}-1}+\ldots+\mathrm{B}_{\mathrm{n}} \mathrm{A}_{0}\right) \lambda^{\mathrm{n}}$

Here each coefficient of λ and constants terms are equal.
(i.e)

$$
\mathrm{A}_{0} \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{~A}_{0}
$$

$$
\mathrm{A}_{0} \mathrm{~B}_{1}+\mathrm{A}_{1} \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{~A}_{1}+\mathrm{B}_{1} \mathrm{~A}_{0} \quad \Rightarrow \quad \mathrm{~A}_{0} \mathrm{~B}_{1}=\mathrm{B}_{0} \mathrm{~A}_{1} \quad \text { and } \mathrm{A}_{1} \mathrm{~B}_{0}=\mathrm{B}_{1} \mathrm{~A}_{0}
$$

$$
\mathrm{A}_{0} \mathrm{~B}_{\mathrm{n}}+\mathrm{A}_{1} \mathrm{~B}_{\mathrm{n}-1}+\ldots+\mathrm{A}_{\mathrm{n}} \mathrm{~B}_{0}=\mathrm{B}_{0} \mathrm{~A}_{\mathrm{n}}+\mathrm{B}_{1} \mathrm{~A}_{\mathrm{n}-1}+\ldots+\mathrm{B}_{\mathrm{n}} \mathrm{~A}_{0}
$$

$$
\Rightarrow \quad \mathrm{A}_{\mathrm{n}} \mathrm{~B}_{0} \xlongequal[=]{=} \mathrm{B}_{0} \mathrm{~A}_{\mathrm{n}}, \mathrm{~A}_{1} \mathrm{~B}_{\mathrm{n}-1}=\mathrm{B}_{1} \mathrm{~A}_{\mathrm{n}-1}, \ldots, \mathrm{~A}_{0} \mathrm{~B}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}} \mathrm{~A}_{0}
$$

Now we have to prove $\mathrm{A}(\lambda) \mathrm{B}(\lambda)$ is k-normal.
$\mathrm{A}(\lambda) \mathrm{B}(\lambda)[\mathrm{A}(\lambda) \mathrm{B}(\lambda)]^{\mathrm{T}} \mathrm{K}=\mathrm{A}(\lambda) \mathrm{B}(\lambda) \mathrm{A}^{\mathrm{T}}(\lambda) \mathrm{B}^{\mathrm{T}}(\lambda) \mathrm{K}=\mathrm{A}(\lambda) \mathrm{A}^{\mathrm{T}}(\lambda) \mathrm{B}(\lambda) \mathrm{B}^{\mathrm{T}}(\lambda) \mathrm{K}$

$$
=\mathrm{A}(\lambda) \mathrm{A}^{\mathrm{T}}(\lambda) \mathrm{K} \mathrm{~B}^{\mathrm{T}}(\lambda) \mathrm{B}(\lambda)=\mathrm{K}[\mathrm{~B}(\lambda) \mathrm{A}(\lambda)]^{\mathrm{T}}[\mathrm{~A}(\lambda) \mathrm{B}(\lambda)]=\mathrm{K}[\mathrm{~A}(\lambda) \mathrm{B}(\lambda)]^{\mathrm{T}}[\mathrm{~A}(\lambda) \mathrm{B}(\lambda)] .
$$

Hence $A(\lambda) B(\lambda)$ is also a fuzzy k-normal polynomial matrix.

Theorem:3.4

If $\mathrm{A}(\lambda) \in F(\lambda)^{n \times n}$, then the following conditions are equivalent:
(i) $\mathrm{A}(\lambda)$ is fuzzy k-normal polynomial matrix.
(ii) $\mathrm{A}^{\mathrm{T}}(\lambda)$ is fuzzy k -normal polynomial matrix.
(iii) $h \mathrm{~A}(\lambda)$ is fuzzy k-normal polynomial matrix, where $h \in F$.

Proof:

The proof is similar lines to that of theorem 2.3.

Theorem:3.5

If $\mathrm{A}(\lambda), \mathrm{B}(\lambda) \in F(\lambda)^{n \times n}$ are fuzzy k -normal polynomial matrices and $\mathrm{A}(\lambda) \mathrm{B}^{\mathrm{T}}(\lambda) \mathrm{K}=\mathrm{K} \mathrm{B}^{\mathrm{T}}(\lambda) \mathrm{A}(\lambda)$ and $\mathrm{B}(\lambda) \mathrm{A}^{\mathrm{T}}(\lambda) \mathrm{K}=\mathrm{K} \mathrm{A}^{\mathrm{T}}(\lambda) \mathrm{B}(\lambda)$, then $\mathrm{A}(\lambda)+\mathrm{B}(\lambda)$ is fuzzy k -normal polynomial matrix.

Proof:

The proof is similar lines to that of theorem 2.4.

Definition :3.6

A fuzzy k -unitary polynomial matrix is a polynomial matrix whose coefficient matrices are fuzzy k-unitary matrices.

Theorem:3.7

If $\mathrm{A}(\lambda) \in F(\lambda)^{n \times n}$, then the following conditions are equivalent
(i) $\mathrm{A}(\lambda)$ is fuzzy k-unitary polynomial matrix.
(ii) $\mathrm{A}^{\mathrm{T}}(\lambda)$ is fuzzy k - unitary polynomial matrix.
(iii) $\mathrm{hA}(\lambda)$ is fuzzy k-unitary polynomial matrix, where $\mathrm{h} \in \mathrm{F}$.

Proof:

The proof is similar lines to that of theorem 2.3.

Theorem:3.8

Let $\mathrm{A}(\lambda), \mathrm{B}(\lambda) \in F(\lambda)^{n \times n}$. If $\mathrm{A}(\lambda)$ and $\mathrm{B}(\lambda)$ are fuzzy k-unitary polynomial matrices, then $\mathrm{A}(\lambda) \mathrm{B}(\lambda)$ is fuzzy k-unitary polynomial matrices.

Proof:

The proof is similar lines to that of theorem 2.8.

Theorem:3.9

Let $\mathrm{A}(\lambda), \mathrm{B}(\lambda) \in F^{n \times n}$. If $\mathrm{A}(\lambda)$ and $\mathrm{B}(\lambda)$ are fuzzy k-unitary polynomial matrices, then $\mathrm{B}(\lambda) \mathrm{A}(\lambda)$ is fuzzy unitary polynomial matrices.

Proof:

The proof is similar lines to that of theorem 2.9.

REFERENCES

[1] Indira.R, Subharani.V, On K-Normal and unitary polynomial matrices, Int. J. of New Tech.in Sci. Engg. vol-2, 2015.
[2] Meenakshi.A.R,Fuzzy Matrix, Theory And Applications,2008.

